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SUMMARY

This paper describes an edge-based implementation of the generalized residual minimum (GMRES)
solver for the fully coupled solution of non-linear systems arising from finite element discretization of
shallow water equations (SWEs). The gain in terms of memory, floating point operations and indirect
addressing is quantified for semi-discrete and space–time analyses. Stabilized formulations, including
Petrov–Galerkin models and discontinuity-capturing operators, are also discussed for both types of
discretization. Results illustrating the quality of the stabilized solutions and the advantages of using the
edge-based approach are presented at the end of the paper. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shallow water equations (SWEs) play an important role in hydraulic engineering. Many
problems, such as the prediction of dam breaks, currents and water elevation in coastal
estuaries, bays, oceans and rivers can be modeled by the SWEs. The solution of these
equations also provides the necessary data for the determination of pollutant transport in
water quality models.

For many years finite difference methods have been extensively used to solve problems
governed by the SWEs. Only in the late 1970s did the finite element method appear as a new
alternative in the context of fluid dynamics. With the increase in computational power in the
past 25 years, much attention has been given to the finite element method. Although
computationally more complex, the finite element method was recognized as having some
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evident advantages over finite difference schemes. The inherent capacity of treating the
boundaries in a more natural way (capacity of dealing with unstructured meshes) and its solid
mathematical basis have encouraged the use of the finite element method.

As is well known, the vertically averaged version (2DH model) of the SWEs may constitute
an incompletely parabolic or a hyperbolic system. This system, if written in terms of conservation
variables, leads to non-symmetric forms. Symmetric forms can be obtained by imposing a change
of variables. One example of symmetric form is the one obtained with the use of the so-called
entropy variables [1–3]. In this case, it can be shown that for incompletely parabolic systems,
the Galerkin method satisfies the entropy condition [4,5]. Nevertheless, this is not the case with
hyperbolic systems, where stability bounds can only be achieved by adding quadratic weighted
residuals to the variational formulation. These positive terms are provided by Petrov–Galerkin
models and discontinuity-capturing operators. In other words, stabilized methods should be used
if shocks/discontinuities and/or sharp layers need to be correctly represented.

The finite element discretization of the SWEs leads to a non-linear coupled non-symmetric
system of algebraic equations. Transient solutions may be obtained by using predictor
multi-corrector time stepping algorithms, which means that a sequence of linear systems must
be solved. Rather than direct solvers, iterative methods are frequently used to solve these linear
systems. In this paper we discuss the implementation of the generalized residual minimum
(GMRES) iterative solver using an edge-based data structure. In the context of finite elements,
edge-based representation has already been used in order to efficiently compute the nodal balance
of fluxes [6,7]. However, other benefits can be attained from edge-based data structures. In
comparison with the conventional element-by-element techniques, edge-by-edge formulation
results in a remarkable improvement, in terms of memory and CPU requirements, when used
to perform matrix–vector product operations [8]. We address this issue by applying an
edge-based data structure to obtain the fully coupled solution of the SWEs.

This paper is organized as follows: in Section 1 we recall the governing equations, written in
terms of velocity/celerity variables [9–11]. In Sections 2 and 3, the space–time and semi-discrete
stabilized formulations are discussed. In Section 4 the predictor multi-corrector algorithms for
both types of discretization are described, and finally, in Section 5 we present the edge-based
solution strategy, quantifying the gain in terms of memory requirements, CPU time and indirect
addressing for the linear triangle and its correspondent space–time wedge-shaped element. Three
numerical examples are shown at the end of the paper. The first example is the classical
one-dimensional dam-break problem, where the stabilized solutions are compared with the exact
solution obtained with a Riemann solver. The other two examples were selected in order to
demonstrate the superior performance of the edge-based approach when compared with the usual
element-by-element techniques. The second example is a two-dimensional extension of the first
and the third one is the simulation of a tidal flow.

2. GOVERNING EQUATIONS

In the free surface flow of relatively thin layers (here represented by H, the total water depth
of water, measured along the vertical direction) the horizontal velocities are of primary
importance and the problem can be reasonable approximated in two dimensions.
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Let (x1, x2)���R2 define a set of points on the horizontal plane x3=0, representing the
undisturbed water surface. For a given time t, let � represent the water surface elevation
(perturbed motion) and h be the depth of water, both measured from the undisturbed water
surface. The domain of interest is the shallow layer of width H=�+h confined between the
free water surface, described by the function x3=�(x1, x2, t), and the bottom bed surface,
given by the function x3= −h(x, y). The perturbed shallow water body motion is governed by
the three-dimensional Navier–Stokes equations for incompressible flow, and the basic assump-
tion to derive the SWEs relies on the use of a barotropic model to physically approximate the
shallow water motion. This is achieved assuming that the pressure field is near to hydrostatic
equilibrium (undisturbed configuration). Integrating the three-dimensional Navier–Stokes
equations along the vertical direction, under the simplifying assumption of hydrostatic pressure
distribution (negligible vertical acceleration and viscous forces), combined with the free surface
kinematic condition and the non-impenetrability bottom bed condition, we arrive at the 2DH
model for the SWEs

U,t+Fi,i=F (1)

where the inferior comma represents partial differentiation, repeated indices indicate summa-
tion, UT= [Hu1 Hu2 H ] denotes the vector of conservation variables, Fi (i=1, 2) are the
hydraulic fluxes

F1
T=

�
Hu1

2+
1
2

gH2 Hu1u2 Hu1
n

(2)

F2
T=

�
Hu1u2 Hu2

2+
1
2

gH2 Hu2
n

(3)

and F is the source term
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+
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(4)

In the above expressions, (u1, u2) are the vertically averaged horizontal velocity components, g
is the gravity acceleration, f is the Coriolis parameter, � is the constant density (well mixed
layers), � i

s are the wind stress components at the free surface and � is the eddy viscosity
coefficient, which takes into account the horizontal diffusion effects for an ‘appropriate’
turbulence model. Bottom friction forces are modeled by the Chezy formula �=g(u1

2+u2
2)1/2/

C2, where C is the Chezy coefficient.
System (1) is written in the so-called divergence or conservative form and represents an

incomplete parabolic system of equations. On the other hand, the reduced equation
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U,t+Fi,i=0 (5)

represents a hyperbolic system.
Alternatively to the divergence form, the SWEs can be written in advective form if we apply

the chain rule. From the hydraulic fluxes definition we have that

Fi,i(U)=
�Fi

�U
�U
�xi

=AiU,i (6)

where Ai are the Jacobian flux matrices

A1=

�
�
�
�
�

2u1 0 gH−u1
2

u2 u1 −u1u2

1 0 0

�
�
�
�
�

, A2=

�
�
�
�
�

u2 u1 −u1u2

0 2u2 gH−u2
2

0 1 0

�
�
�
�
�

(7)

Using these definitions, Equation (1) can be rewritten as

U,t+AiU,i=F (8)

or in equivalent way

U,t+A·�U=F (9)

with

AT= [A1 A2], �U=
�U,1

U,2

n
, A·�U=AT�U (10)

The dot product notation A·�U is used to represent a matrix product in order to keep an
analogy with the scalar transport equation, as this term plays the role of a generalized
advective term. Since the matrices Ai are non-symmetric, Equation (9) represents a non-
symmetric incomplete parabolic system, written in terms of the variables (Hu1, Hu2, H).

Any change of variables U�V can be achieved using the following relations:

U,t=
�U
�V

�V
�t

=A0V,t (11)

Fi,i=
�Fi

�U
�U
�V

�V
�xi

=AiA0V,i (12)

Substituting these results into Equation (1) we arrive at the transformed system
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A0V,t+A� iV,i=F (13)

where A� i=AiA0.
Symmetric forms are desirable first because they possess certain stability properties if

entropy variables are used, and second because stabilized methods such as the streamline
upwind Petrov–Galerkin (SUPG) method and its space–time version, the space–time
Petrov–Galerkin (STPG) method, can be straightforwardly applied. As is well known,
symmetric forms of hyperbolic systems can be constructed once the correspondent entropy
function for the original non-symmetric hyperbolic system has been derived. If in the
incomplete parabolic system (13) V is chosen to be the vector of entropy variables, a
symmetric system is obtained. Moreover, it can be shown that the Galerkin finite element
formulation satisfies the entropy condition. However, this is not the case of hyperbolic
systems, where stability bounds can only be obtained with the addition of stabilizing terms,
such as the SUPG and shock/discontinuity-capturing operators. This can be translated by
the fact that, to well represent solutions exhibiting shocks/discontinuities and or sharp
layers, these stabilized methods should be used.

Another type of symmetric form can be achieved using velocity/celerity variables. To this
end let us define the change of variables U�V= (u1, u2, �), where �=2c and c=�gH is
the gravitational wave propagation velocity (celerity). For this change of variables we can
write

A0=U,V=
c
g

�
�
�
�
�
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0 c u2

0 0 1

�
�
�
�
�

(14)

A� 1=A1A0=
c
g
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�
�
�
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2
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A� 2=A2A0=
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g
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2

0 c u2

�
�
�
�
�

(16)

Substituting the above expressions into Equation (13) and pre-multiplying by A0
−1 we

obtain the SWEs written in terms of velocity/celerity variables

V,t+A� iV,i=F� (17)

where
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For convenience, at this point we will change the notation by making U=V, A=A� , and
rewrite Equation (17) as

U,t+A·�U=F� (20)

Assuming that the quantities (1/H)�H ·(��ui) can be neglected, the viscous terms included in
F� can be written in the form of the diffusion operator � ·(K�U), where K is the diffusivity
matrix of the system

K=
�K11 K12

K21 K22

n
, Kij=�ij�

�
�
�
�
�

1 0 0
0 1 0
0 0 0

�
�
�
�
�

(21)

Here �ij denotes the Kronecker delta, i.e. �ij=1 for i= j and �ij=0 otherwise.
Finally, the SWEs may be written in terms of velocity/celerity variables as

U,t+A·�U−� ·(K�U)=F (22)

where the source terms are now given by

F=

�
�
�
�
�
�
�

g
�h
�x1

+ fU2−
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(23)

3. SPACE–TIME FORMULATION

At a time t of the period of observation [0, T ]�R+, the spatial domain is mathematically
represented by an open set �t�R2 with boundary �t. For n=0, 1, 2, . . . , N we will consider
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a partition of [0, T ] given by t0=0� t1 · · · � tn� tn+1 · · · � tN=T. We denote by In=
(tn, tn+1) the nth time interval and let �n=�tn

and �n=�tn
. We will say that for each n, the

space–time domain of interest is the ‘slab’ Sn, enclosed by �n, �n+1 and �� n, the lateral surface
bounded by the curves �n and �n+1 (see Figure 1). Then, for n=0, 1, 2, . . . , we will define a
finite element partition of Sn such that

Sn= �
(nel)n

e=1

Sn
e, Sn

i � Sn
j =�, for i� j (24)

Here (nel)n is the number of elements in the space–time slab Sn.
Under the above definitions we will assume that the finite element subspace of weighting

functions U� n
h is the set of continuous piecewise polynomials in Sn, which may be discontinuous

across the slab interfaces, i.e.

U� n
h�{U� h; U� h� (C0(Sn))3; U� h�Sn

e� (Pk(Sn
e))3; U� h��� n

=0} (25)

In the above expression, Pk is the set of polynomials of degree less than or equal to k. For a
prescribed boundary condition g on �� n a general trial function is then an element of Un

h:

Un
h�{Uh; Uh� (C0(Sn))3; Uh�Sn

e� (Pk(Sn
e))3; Uh��� n

=g} (26)

Considering that the approximations are discontinuous at the slab interfaces, let us define the
jump of Uh at time tn

[Uh(tn
+)]=Uh(tn

+)−Uh(tn
−) (27)

where

Figure 1. Space–time slab.
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Uh(tn
�)= lim

��0
Uh(tn��) (28)

The space–time finite element formulation consists of: given U(t0), for each Sn, n=
0, 1, 2, . . . , find Uh�Un

h such that for all U� h�U� n
h the following variational equation is satisfied:

�
Sn

R·U� h d� dt+
�

�
[Uh(tn

+)] ·U� h(tn
+) d�+ �

(nel)n

e=1

�
Sn

e

R·�(U� ,th+A·�U� h) d� dt

+ �
(nel)n

e=1

�
Sn

e

�̄ �Uh ·�U� h d� dt=0 (29)

The residual R associated with the approximate solution Uh is given by

R(Uh)=U,th+A(Uh) ·�Uh−� ·(K�Uh)−F(Uh) (30)

The first two integrals in Equation (29) correspond to the time-discontinuous Garlerkin
method. The third integral is the contribution from the STPG term, while the last integral
corresponds to the discontinuity-capturing term.

The 3×3 symmetric positive matrix � of intrinsic time scales and the scalar �̄ measure the
necessary amount of diffusion to be added to the system. Using the definition found in
Reference [12] we have

�=
���	0

�x0

�2

I3+
�	i

�xj

�	i

�xk

AjAk+
��	i

�xk

�	j

�xl

�	i

�xm

�	j

�xn

�
KklKmn

n−1/2

(31)

where x0= t, 	i (i=0, 1, 2) are the local co-ordinates of the parent element Sn
e and I3 denotes

the 3×3 identity matrix.
For the consistent approximate upwind (CAU) method proposed in References [13,14], the

scalar �̄ has the form

�̄=
(RT�cR)
��Uh�2 (32)

which ensures that a quadratic weighted residual term is always added to the variational
equation. In fact, for U� h�Uh, the CAU discontinuity-capturing term becomes

	R	�c

2 = �
(nel)n

e=1

�
Sn

e

RT�cR d� dt (33)

The definition for the matrix �c can be found in Reference [13], leading to

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 659–685



SHALLOW WATER EQUATIONS 667

�̄=

�
�
�
�
	

max
�

0,
�R�

��	Uh�−
(U,th+A·�Uh)T�R

��Uh�2
�

, if �Uh�0

0, if �Uh=0
(34)

The subscript 	 denotes differentiation with respect to the local co-ordinates 	i (i=1, 2).

Remark
Note that for hyperbolic problems R=U,th+A·�Uh, which means that for U� h�Uh the STPG
term also leads to a positive weighted square residual term

	R	�
2= �

(nel)n

e=1

�
Sn

e

RT�R d� dt (35)

Let us assume that the spatial domain does not change from time tn to time tn+1, i.e.
�n��n+1 and �n��n+1. Defining a spatial discretization for �n such that

�n= �
(nel)n

e=1

�n
e, �n

i ��n
j =� for i� j (36)

each slab Sn with boundary �� n may be defined by

Sn=�n×In, �� n=�×In (37)

Then each �n
e is associated with the space–time finite element Sn

e =�n
e ×In. Under these

circumstances, the linear space–time finite element approximations over each slab Sn will be
given by

Uh= �
(nnode)n

j=1


j(x1, x2)[N1(t)Un+
j +N2(t)Un+1−

j ] (38)

U� h= �
(nnode)n

i=1


i(x1, x2)[N1(t)U�
n+
i +N2(t)U�

n+1−
i ] (39)

where (nnode)n is the number of nodal points of �n, 
i is the linear spatial interpolation
function associated with each node i in �n and N1, N2 are the linear time interpolation
functions associated with t= tn

+ and t= tn+1
− respectively. The unknown nodal values of Uh

and U� h are denoted by Un+
j , Un+1−

j and U�
n+
j , U�

n+1−
j .

Introducing the above approximations in the variational equation (29), the following
non-linear discrete system of equations is obtained:

KU=F (40)

where
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K=
�K11 K12

K21 K22

n
, F=

�F1

F2

n
, U=

�Un+

Un+1−

n
(41)

K11=K11
ad+M11

G +M (42)

K12=K12
ad+M12

G (43)

K21=K21
ad+M21

G (44)

K22=K22
ad+M22

G (45)

The matrices Kij
ad are the result of the weighting of the advective and diffusive terms and the

vector Fi is the weighted source term

Kij
ad=Kij

G+Kij
PG+Kij

DC (46)

F1=F1
G+F1

PG+MUn−
h (47)

F2=F2
G+F2

PG (48)

The superscripts G, PG and DC refer to the contributions of the Galerkin, Petrov–Galerkin
and discontinuity-capturing operators, and the indices i, j refer to the time interpolation
functions Ni, Nj (i, j=1, 2). The matrices Mij

G come from the Galerkin term 
Sn
U,th ·U� h d� dt

and M comes from the jump term.

4. SEMI-DISCRETE FORMULATION

In the semi-discrete formulation, the spatial domain is a fixed two-dimensional domain � with
boundary �, which is partitioned into nel elements �e

�= �
nel

e=1

�e, �i��j=� for i� j (49)

The finite element subspaces considered at time t= tn are given by

Un
h�{U� h; U� h� (C0(�))3; U� h��e� (Pk(�e))3; U� h��=0} (50)

Un
h�{Uh; Uh� (C0(�))3; Uh��e� (Pk(�e))3; Uh��=g} (51)

The problem now consists of: for a given U(t0) and for each time tn, n=1, 2, . . . , find Uh�Un
h

such that for all U� h�U� n
h the following variational form is satisfied:
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�
�

R·U� h d�+ �
nel

e=1

�
�e

R·(�A·�U� h) d�+ �
nel

e=1

�
�e

�̄ �Uh ·�U� h d�=0 (52)

where

�=
��	i

�xj

�	i

�xk

AjAk+
��	i

�xk

�	j

�xl

�	i

�xm

�	j

�xn

�
KklKmn

n−1/2

(53)

and �̄ is the same as in Equation (34).

Remark
The SUPG results in a positive weighted square residual term only in time-independent
hyperbolic problems.

In the semi-discrete version, the finite element approximations depend only on the spatial
variables. Thus, for time t= tn, the approximation functions are given by

Uh= �
nnode

j=1


j(x, y)Un
j (54)

U� h= �
nnode

i=1


i(x, y)U� n
i (55)

where Un
j are the unknowns values of Uh for node j, U� n

i are the nodal values of U� h and 
j is
the spatial interpolation function for node j. The subscript n refers to time tn and nnode is the
total number of nodes.

Substituting approximations (54) and (55) into the variational formulation (52), the follow-
ing ordinary differential system of equations is obtained:

MU� n+KUn=F (56)

where Un is the vector of nodal values of Uh, U� n represents the time derivatives (�Uh/�t)t= tn
,

and M, K and F are equal to

M=MG+MPG (57)

K=KG+KPG+KDC (58)

F=FG+FPG (59)

The time derivatives can be approximated by a finite difference scheme, such as the trapezoidal
rule

Un+1=Un+�tU� n+� (60)
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U� n+�= (1−�)U� n+�U� n+1 (61)

The parameter � controls the precision and stability of the method. The values �=0.5 and
�=1.0 correspond to the well-known Crank–Nicolson and Euler-backward approximations.

5. SOLUTION OF THE NON-LINEAR SYSTEM OF EQUATIONS

Both systems of Equations (40) and (56) can be solved using predictor multi-corrector
algorithms, derived from the Newton–Raphson family methods. For system (40), this al-
gorithm has the form

U0=
�Un+

0

Un+1−
0

n �
(predictor phase) (62)

For i=0, 1, 2, . . .

Ri=F−KUi

K�Ui=Ri

Ui+1=Ui+�Ui



�
�
�
�

(multi-corrector phase) (63)

In above, the starting vectors Un+
0 , Un+1−

0 can be both taken as Un− (see Figure 2). Note that
the space–time discrete system has (2×neq) equations, where neq is the number of equations
arising from the equivalent semi-discrete discretization. Therefore, it can be conveniently split
into two coupled systems with neq equations each

K11U1+K12U2=F1 (64)

K21U1+K22U2=F2 (65)

Figure 2. Starting solution for the time interval In= (tn, tn+1): Un+
0 �Un+1−

0 �Un−.
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For simplicity, we have used the notation U1=Un+ and U2=Un+1−. The corresponding
predictor multi-corrector algorithm is given by

For i=0, 1, 2, . . .

R1
i =F1−K11U1

i −K12U2
i

K11�U1
i =R1

i

U1
i+1=U1

i +�U1
i



�
�
�
�
�
�
�
�

(multi-corrector phase) (66)
R2

i =F2−K21U1
i+1−K22U2

i

K22�U2
i =R2

i

U2
i+1=U2

i +�U2
i

For the semi-discrete system we can write

Un+1
0 =Un+�t(1−�)U� n

U� n+1
0 =0

�
(predictor phase) (67)

For i=0, 1, 2, . . .

Ri=Fn+1−MU� n+1
i −KUn+1

i

M*�U� n+1
i =Ri

U� n+1
i+1 =U� n+1

i +�U� n+1
i

Un+1
i+1 =Un+1

0 +��tU� n+1
i+1



�
�
�
�

(multi-corrector phase) (68)

where

M*=M+��tK (69)

As can be seen, each non-linear iteration involves three steps

Evaluate the non-linear residual Ri(Ui) (70)

Solve the system K(Ui)�Ui=Ri (71)

Update solution Ui+1=Ui+�Ui (72)

Given a tolerance �, the non-linear process stops when

	Ri	��	R0	 (73)
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Iterative solvers are especially suitable for this type of algorithm, as the accuracy required to
solve Equation (71) depends on the non-linear residual Ri. The number of linear iterations can
be drastically reduced using a variable tolerance � to control the linear residual

(K�Ui−Ri)��Ri (74)

This kind of procedure gives rise to inexact Newton methods [15,16]. The results presented in
this paper were obtained using the formula [17]

�=min
�

�0,
�	Ri	

	R0	
�1/2�

(75)

where �0 is the minimum initial value for �.
Another advantage of iterative solvers is that edge-based data structures can be exploited to

efficiently perform the matrix–vector products appearing in Equation (71). The required
edge-based matrices can be assembled in the element-based loop used in Equation (70), where
the element matrices and the non-linear residual are evaluated in the usual manner. In next
section, the benefits of using the edge-based approach will be examined in details.

6. ITERATIVE SOLUTION USING EDGE-BASED DATA STRUCTURE

As it was shown in the previous section, both semi-discrete and space–time formulations lead
to a non-linear system of equations which are solved by a sequence of linear systems, where the
coefficient matrix is non-symmetric with a symmetric skyline profile. Obviously, direct
methods based on Gaussian elimination can be used to solve such systems. However, as the
number of equations increases, these methods become memory and CPU expensive when
compared with iterative solvers. Among the latter, one of the most popular and efficient is the
GMRES solver, designed for non-symmetric systems. This method, developed by Saad and
Schultz [18], minimizes the residual norm and is based on the generation of Krylov spaces. The
performance of any iterative method can be significantly improved by using some type of
preconditioning. Preconditioning simply means transforming the original system of equations
into another one having the same solution, but which is easier to be solved. A full and detailed
discussion on iterative methods and preconditioners can be found in Reference [19]. Another
way to improve performance is to optimize the code, reducing memory requirements, the
number of floating point operations (flop) and the number of indirect addressing (i/a)
operations.

The core of the GMRES algorithm lies on three operations

x=x+�p (Vector update) (76)

�=rtr (Dot product) (77)

p=Ku (Matrix–vector product) (78)
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Operations of type (76) and (77) can be executed in a very efficient way in parallel/vector
machines, as well as in scalar machines. Clearly, an operation of type (78) is the one with the
highest computational demand. Mainly in non-linear, time-dependent problems, as is the case
of the SWEs, this operation is repeated many times, and special attention must be given to it.
This kind of operation is usually performed at an element-based approach, but a great
improvement can be obtained if an edge-based data structure is used.

6.1. Edge-based data structure

We know beforehand that the matrix K is sparse as it is a result of a finite element
discretization. To take advantage of this characteristic, the global matrix K does not need to
be assembled. The usage of element matrices guarantees that only non-zero coefficients will be
stored. Unlike the global storage, the element level storage does not depend on the bandwidth
of the system. Using the element level storage, the matrix–vector product can be performed at
an element-by-element basis

p= A
nel

e=1
Keue (79)

In the above expression, A is the assembly operator, Ke are the element matrices, ue are
components of u referred to as local degrees of freedom (df) and nel is the total number of
elements.

Let us consider a mesh composed by nel elements of a given type, with nnode nodal points.
Denoting

neq as the total number of equations
nne as the number of nodes per element
ndf as the number of degrees of freedom per node
nd as the number of degrees of freedom per element

the number of stored coefficients per element is equal to nd2, for non-symmetric matrices. In
each pass of the element loop, the number of floating point operations is 2×nd2 and the
number of indirect addressing is 3×nd. The performance of the element-by-element matrix–
vector product algorithm can be improved using the technique proposed by Gijzen in
Reference [20]. This technique consists in splitting the product in

p= (diag K)u+ A
nel

e=1
(Ke−diag Ke)ue (80)

where diag K is the block diagonal of K, with each block having dimensions (ndf, ndf) as
shown in Figure 3. Extracting the block diagonal from the element matrices, the number of
stored coefficients for each element is reduced to nen× (nen−1)×ndf2. The number of flops
in each pass of the element loop is reduced to 2×nen× (nen−1)×ndf2 and the number of
i/a operations is not changed.

With the above element-by-element techniques, the sparsity of the system is fully exploited
by the element level storage, and the assemblage of a global nodal block diagonal reduces the
amount of necessary memory and the number of flops as well. However, coefficients relating
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Figure 3. Block diagonal.

two different nodes still remain spread over the contributing elements, as shown in Figure 4.
In this figure, two elements (A and B) contribute to the global coefficient s(i, j ). Both
contributions sA(i, j ) and sB(i, j ) are stored in the corresponding element matrices. If the edge
connecting node i to node j is used to store the coefficient s(i, j ), the spreading of element
contributions is avoided. This can be done performing a loop on the elements and assembling
the coefficients by edges. Figure 5 shows these edges for the linear triangle and its correspon-
dent space–time element, the wedge-shaped element.

Using edge-based matrices, the matrix–vector product given in Equation (80) is replaced by

p= (diag K)u+ A
nedge

a=1
(Ka−diag Ka)ua (81)

where (Ka−diag Ka) are the edge matrices containing only off-diagonal coefficients and nedge
is the total number of edges. The edge-based algorithm for matrix–vector product is shown in
the bullet list below. The number of stored coefficients per edge is equal to 2×ndf2. The
number of flops is 4×ndf2 and the number of i/a operations is 6×ndf for each pass of the
edge-based loop.

Figure 4. Element contributions to an off-diagonal coefficient.
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Figure 5. Element edges: (a) triangle (three edges); (b) wedge-shaped element (15 edges).

General algorithm for edge-based matrix–vector product


 Perform global product: p= (diag K)u.

 Loop on edges:


 Recover the global numbering of the local degrees of freedom.

 Gathering operation: ua	u.

 Perform product: pa= (Ka−diag Ka)ua.

 Scattering and accumulation operation: p	pa.


 End of loop.

Tables I and II compare the edge-based (EDGE) and the element-based approaches for the
linear triangle and the wedge-shaped element. The element-by-element techniques are denoted
by EBE (full element matrices) and EBE-BD (block diagonal assembled). As can be noted in
these tables, the reduction in terms of memory and flops is almost the same for both elements.
However, in terms of i/a operations there is a significant increase for the wedge-shaped element
and no reduction for the linear triangle. Also, it is seen that the number of flops per element
is twice the number of i/a operations. The number of i/a operations can be reduced by
performing the main loop over groups of edges rather than over individual edges [8]. Some of
these groups are illustrated in Figure 6. The corresponding numbers of i/a operations is
indicated in Table III.

Table I. Linear triangle: number of stored coefficients (nc), flops and i/a
operations per element (ndf=3; nedge/nel=1.5).

nc i/aflop

EBE 81 162 27
27EBE-BD 10854
275427EDGE

Table II. Wedge-shaped element: number of stored coefficients (nc), flops and
i/a operations per element (ndf=3; nedge/nel=6.5).

nc flop i/a

EBE 324 648 54
EBE-BD 270 540 54

234117EDGE 117
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Figure 6. Groups of edges.

Table III. Number of i/a operations per edge (ndf=3).

i/a

18Edge
13.5Star 2

Star 3 12
Star 4 11.25

10.8Star 5
10.5Star 6
9Triangle 1
7.2Triangle 2

Triangle 4 6

For the wedge-shaped element, the edges can be separated into three sets, as shown in
Figure 7. When solving the space–time system (66), only sets 1 and 2 are required (if the
non-linear residuals R1

i and R2
i are evaluated at an element-by-element basis). Moreover, if the

spatial discretization is the same for both time levels, we have that set 1�set 2.

7. NUMERICAL EXAMPLES

In this section three numerical examples are presented. The first test case is the one-
dimensional dam break problem, for which the stabilized solutions in semi-discrete and
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Figure 7. Edges belonging to triangulation in tn+ (set 1), edges belonging to triangulation in tn+1− (set
2) and edges connecting both triangulations (set 3).

space–time versions are compared with the exact solution. The other two examples test the
performance of the GMRES solver on a scalar machine (single 400 MHz Pentium II CPU)
using element- and edge-based approaches. The second example is a two-dimensional extension
of the first, and the third one is the simulation of a tidal flow. In all test cases a simple
diagonal preconditioning has been used and the dimension of the Krylov subspace was set to
10. For the non-linear iterations the tolerance was set to �=10−4, and a variable tolerance,
with �0=10−1 was used for the GMRES.

7.1. One-dimensional dam break

This problem consists of a wall separating two undisturbed water levels that is suddenly
removed (Figure 8(a)). Friction effects are neglected and the spatial discretization is given by
a 4×100 triangular elements mesh, as illustrated in Figure 8(b). Figures 9 and 10 show the
results for t=7.50, with �t=0.25. In these figures, we show the approximate solutions for the
water elevation and the velocity obtained with the pure Galerkin, the STPG and the CAU
methods. The results plotted in these figures show a remarkable accuracy improvement when
the CAU method is employed. In Figures 11 and 12 we also present the results corresponding

Figure 8. One-dimensional dam break problem: (a) geometry; (b) mesh.
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Figure 9. Water elevation using space–time elements.

Figure 10. Velocities using space–time elements.

to the semi-discrete version of these methods. As expected, the approximations provided
by the CAU method present the best results. Figure 13 shows the results in terms of
the Froude number. As can be noted in this figure, the flow occurs under sub-critical
conditions.
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Figure 11. Water elevation using semi-discrete formulation (Crank–Nicolson).

Figure 12. Velocities using Crank–Nicolson.

7.2. Two-dimensional dam break

This example is a two-dimensional extension of the first, as shown in Figure 14(a). The spatial
discretization is given by a 2×100×100 triangular elements mesh (Figure 14(b)), resulting in
131001 edges and 59606 equations for the space–time solution and 30200 edges and 29803
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Figure 13. Froude number.

Figure 14. Two-dimensional dam break problem: (a) geometry; (b) discretization.

equations for the correspondent semi-discrete version. The semi-discrete and space–time
solutions for t=7.5 can be seen in Figure 15. The time step is the same as in the
one-dimensional case (�t=0.25). The advantages of using an edge data structure can be seen
in Tables IV and V. These tables present the CPU time spent by the GMRES solver to reach
the solution at t=30.0, or 120 time steps. Element-by-element techniques are denoted by
EBE (full element matrices) and EBE-BD (block diagonal assembled). In the semi-discrete
formulation, the edge-based approach is denoted by EDGE. In the edge-based space–time
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Figure 15. Water elevation for t=7.5: (a) SUPG; (b) semi-discrete CAU; (c) STPG; (d) space–time
CAU.

Table IV. Semi-discrete (Crank–Nicolson): SUPG.

CPU time Non-linear GMRES
iterationsiterations(s)

301.35EBE 605 2680
EBE-BD 231.79 605 2679

157.97 605 2679EDGE

formulation, results were obtained in both ways: solving the entire system (EDGE1) as shown
by Equation (63) or splitting the system in two (EDGE2) as in Equation (66). While in the
former the edges are extracted from the wedge-shaped element, in the latter only the edges
belonging to the spatial discretization (triangles) are used. These tables also show the total
number of non-linear iterations and the total number of GMRES iterations.

7.3. Tidal flow

The last example presents the semi-discrete analysis of a tidal flow in Guanabara bay, situated
in Rio de Janeiro. The mesh with 8609 nodal points and 15901 triangular elements (24512
edges), totaling in 23225 equations, is shown in Figure 16. This mesh was generated in such a
way that the Courant–Friedrich–Lewy (CFL) number should be approximately constant
everywhere. To this end, only the wave propagation velocities were considered. Figure 17
presents a perspective view of the bathymetry. The tidal wave, prescribed at the open
boundary, is represented by a sinusoidal wave with amplitude equal to 0.5 m and period of
43200 s. On the closed boundary, both tangential and normal velocities were set to zero.
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Table V. Space–time: STPG.

CPU time Non-linear GMRES
iterations iterations(s)

1303.33 600EBE 3773
EBE-BD 1134.32 600 3773
EDGE1 758.43 600 3773

358.28 910 5216EDGE2

Figure 16. Finite element mesh: 15901 triangular elements and 24512 edges.

Coriolis and wind effects were neglected, the viscosity is �=2.3×10−4 m2 s−1 and a constant
Chezy coefficient C=50.0 m1/2 s−1 was assumed. The time step adopted was �t=10 s. The
circulation between the two main islands can be seen in Figure 18. Table VI shows the results
after 360 time steps, comparing the CPU time using EBE, EBE-BD and EDGE. In this
example, as the solution is smooth, presenting no sharp layers, the CAU operator was turned
off.

8. CONCLUSIONS

In this paper we have discussed the stabilized space–time and semi-discrete finite element
formulations for the SWEs, using Petrov–Galerkin models and discontinuity-capturing opera-
tors. Although a symmetric form under velocity/celerity variables has been used, the presented
formulations can be straightforwardly applied to the symmetric form derived from entropy
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Figure 17. Perspective view of the bathymetry, ranging from 1 m at the closed boundary (in black) to 46
m at the open boundary (in gray).

Figure 18. Circulation between the two main islands for time t=10800 s.
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Table VI. Semi-discrete (Euler-backward): SUPG.

CPU time Non-linear GMRES
(s) iterations iterations

EBE 870.74 1968 9715
695.78 1968EBE-BD 9715
479.09 1968EDGE 9715

variables. Fully coupled solutions were obtained using the GMRES solver and an edge-based
data structure. Significant improvements, in terms of memory requirements and CPU time
were achieved for both versions, space–time and semi-discrete. It was shown that the
space–time approximation can be obtained in a very efficient way by splitting the system and
using only the edges of the spatial discretization. For the two-dimensional dam break problem,
memory and CPU requirements using this procedure were comparable with those of the
semi-discrete solution using elements. The results obtained here suggest that the edge-based
approach should become a standard for the implementation of iterative solvers.
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